$\mathrm{g}(0.14 \mathrm{~mol})$ of 2,6 -diethoxybenzoic acid and $7 \mathrm{~mL}(0.14 \mathrm{~mol})$ of Br_{2}. The product was recrystallized from isopropyl ether-light petroleum: yield 28.7 g .

3-Chloro-2,6-diethoxybenzoic Acid (27). A solution of 4.05 mL (0.05 mol) of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ in 25 mL of CHCl_{3} was added dropwise, while stirring, to a solution of $10.5 \mathrm{~g}(0.05 \mathrm{~mol})$ of 2,6 -diethoxybenzoic acid in 75 mL of CHCl_{3}. The mixture was heated at 50 ${ }^{\circ} \mathrm{C}$ for 30 min . The solvent was then evaporated, and the residue was recrystallized from isopropyl ether-light petroleum: yield 10.1 g .
(S)-(-)-1-Trityl-2-pyrrolidinecarboxamide (29). Trityl chloride ($88.0 \mathrm{~g}, 0.31 \mathrm{~mol}$) was added in portions to a mixture of $47.6 \mathrm{~g}(0.31 \mathrm{~mol})$ of (S)-(-)-prolinamide hydrochloride and 88 mL (0.63 mol) of triethylamine in 350 mL of CHCl_{3} while stirring and cooling in ice. The mixture was stirred overnight at room temperature and was then extracted with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and dried with anhydrous MgSO_{4}, and the chloroform was evaporated. The residue was recrystallized twice from EtOH-(i-Pr) ${ }_{2} \mathrm{O}$: yield $59.0 \mathrm{~g}(53 \%)$; mp $198-199{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}-34.3^{\circ}$ (c 1.0, CHCl_{3}). Anal. ($\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$) C, H, N.
(S)-(-)-2-[(3-Bromo-2,6-dimethoxybenzamido)methyl]pyrrolidine Hydrochloride (19). A solution of 35.6 g (0.1 mol) of 29 in 200 mL of dry THF was added dropwise, while stirring and cooling in ice, to a stirred mixture of $8.0 \mathrm{~g}(0.2 \mathrm{~mol})$ of LiAlH_{4} in 150 mL of dry $\mathrm{Et}_{2} \mathrm{O}$. The mixture was stirred and heated under reflux for 27 h . After dropwise addition of 50 mL of a saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution while stirring and cooling in ice, the mixture was filtered. The filtrate was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated. The residue (41.0 g of oil) was dissolved in a mixture of 400 mL of CHCl_{3} and 15 mL of triethylamine. To the solution was added dropwise, while stirring a solution prepared as follows: A mixture of 50 mL of SOCl_{2} and 26.1 g (0.1 mol) of 2,6 -dimethoxy-3-bromobenzoic acid was heated on a steam bath for 0.5 h . Toluene was added, and the solvent and excess SOCl_{2} were evaporated at reduced pressure. The residual acid chloride was dissolved in 200 mL of CHCl_{3}.

After the addition of the chloroform solution, the mixture was left overnight at room temperature. The solvent was then evaporated, and to the residue was added 15 mL of 12 N HCl in 300 mL of EtOH. The solution was left at room temperature for 1 h . The ethanol was then evaporated, and the residue was triturated with $\mathrm{Et}_{2} \mathrm{O}$, stirred with 700 mL of $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The water layer was made alkaline with NaOH and extracted with CHCl_{3}. The extract was dried with MgSO_{4}, and the solvent was evaporated. The residue, an oil which crystallized on scratching, was washed with peteroleum ether and dried: yield $18.6 \mathrm{~g} ; \mathrm{mp} 85-90^{\circ} \mathrm{C}$.
The crude free base was converted to the hydrochloride salt by adding a solution of 3 N HCl gas in $\mathrm{Et}_{2} \mathrm{O}$ to a solution of the base in 100 mL of EtOH. The salt was precipitated by the
addition of $\mathrm{Et}_{2} \mathrm{O}$. The product was filtered off and recrystallized from $\mathrm{EtOH}-(i-\mathrm{Pr})_{2} \mathrm{O}$, yielding 18.0 g of the pure compound. Three grams of the hydrochloride dissolved in 200 mL of $\mathrm{H}_{2} \mathrm{O}$ was converted into the free base by the addition of NaOH . After the solution was extracted with CHCl_{3}, the extract was dried, and the solvent was evaporated, 2.1 g of the pure base was obtained, mp 106-107 ${ }^{\circ} \mathrm{C}$.
Pharmacology. Apomorphine-Induced Behavior. Blockade of apomorphine-induced hyperactivity and sterotypies was performed as described previously. ${ }^{4,10}$ Male Sprague-Dawley rats, weighing $250-300 \mathrm{~g}$, were used. the behavior was scored 5,20 , 40 , and 60 min after injection of apomorphine ($1 \mathrm{mg} / \mathrm{kg}$), given subcutaneously into the neck. The test compounds were dissolved in saline or water and injected ip 60 min prior to apomorphine. The ED_{50} 's for stereotypies are the doses that reduce the strength of apomorphine-induced stereotypies by 50% over the total observation period of 60 min . The ED_{50} 's for hyperactivity are the doses that reduce the number of animals showing hyperactivity by 50% over the observation period of 60 min . Each ED_{50} was calculated by Theil's method and corrected for ties according to Sen's procedure based on Kendell's τ. 29,30 The 90% confidence interval was calculated according to a slightly modified version of Sen's procedure.
Measurement of Catalepsy in Rats. Eight rats at each dose level were tested in open perspex cages [40(l) $\times 25(\mathrm{w}) \times 15(\mathrm{~h})$ cm] fitted with a $7-\mathrm{cm}$-high horizontal bar. Catalepsy was measured $1,2,4,8$, and 24 h after injection of the test compound. The fore limbs of each animal were placed on the horizontal bar. A cataleptic state was scored if the rat failed to remove itself from the bar within 60 s . Maximal catalepsy tended to occur between 2 and 8 h following the treatment. The dosage at which 50% of the animals were cataleptic (ED_{50} and the 95% confidence interval) was calculated by probit analysis on the peak cataleptic effect observed for each compound.

Acute Toxicity. The acute toxicity was assessed in rats observed for 24 h after ip injection. The LD_{50} values and the 95% confidence intervals were determined by probit analysis based on four doses, with five animals per dose level. If data were not suitable for regression analysis, the approximate LD_{50} values were determined from log dose-response curves.
Acknowledgment. The excellent technical work of B. A. Kristina Ängeby is gratefully acknowledged. We also thank Dr. L. Agnati, Bologna, and B. A. O. Stockman, Astra Läkemedel AB, for invaluable help and suggestions in the statistical analysis.
(29) P. K. Sen, J. Am. Stat. Assoc., 63, 1379 (1968).
(30) H. Theil, Ned. Akod. Wetemsch. Proc., Ser A, 53, 386 (1950).

β-Adrenergic Blocking Agents. 22.
 1-Phenoxy-3-[[(substituted-amido)alkyl]amino]-2-propanols

M. S. Large and L. H. Smith*

Imperial Chemical Industries PLC, Pharmaceuticals Division, Alderley Park, Macclesfield, Cheshire, England. Received October 30, 1981

The synthesis of a series of 1-phenoxy-3-[[(substituted-amido)alkyl]amino]-2-propanols is described. Many of the compounds are more potent than propanolol as β blockers, while having cardioselectivity comparable to that of practolol, when given intravenously to anesthetized cats. The structure-activity relationships shown by this series of compounds provide further evidence that the addition of substituents to the alkylamino moeity of a β blocker can confer cardioselectivity and that amidic substituents are remarkably effective.

Cardioselectivity has been shown to be associated with a variety of para substituents in the aryl moiety of an (aryloxy)propranolamine. ${ }^{1-3}$ More recent work shows that
(1) L. H. Smith, J. Appl. Chem. Biotechnol., 28, 201 (1978).
(2) B. Ablad, E. Carlsson, and L. Ek, Life Sci., 12, 107 (1973).
the property can also be obtained by replacing the conventional isopropyl or tert-butyl substituent of a β-blocker
(3) B. Basil, J. R. Clark, E. C. J. Coffee, R. Jordan, A. H. Loveless,
D. L. Pain, and K. R. H. Wooldridge, J. Med. Chem., 19, 399 (1976).

Scheme I^{a}

${ }^{a}$ Where $\mathrm{X}=\mathrm{CO}, \mathrm{COY}, \mathrm{CONH}, \mathrm{SO}_{2}$, and $\mathrm{R}, \mathrm{R}_{1}, \mathrm{~A}$ and Y relate to the substituents described in the tables.
by either a 3,4-dimethoxyphenethyl substituent ${ }^{4-6}$ or by a suitably substituted phenoxyalkylamine moiety. ${ }^{7,8}$

In our previous paper ${ }^{9}$ we described a series of 1 -phenyl-2-[[(substituted-amido)alkyl]amino]ethanols 1 ,

which are cardioselective β-adrenoceptor blocking agents. We attributed the cardioselectivity of these compounds to the amidic moiety 2 , which linked the ethanolamine side chain to a variety of aryl, alkyl, aralkyl, and aryloxyalkyl substituents (R_{1}).

We now report on an analogous series of 1-phenoxy-$3-[[($ substituted-amido)alkyl]amino]-2-propanols 3, which are an order of magnitude more potent than the previous series and which also show more widespread cardioselectivity.

3
Chemistry. The majority of compounds listed in Tables I-V were synthesized by methods A and B illustrated in Scheme I. Most of the compounds were prepared by method A, while method B was used to prepare some of the ureido analogues. The designation C used in the tables signifies a separately described method of preparation. The amidoalkylamine precursors used in method A were synthesized by acylating an alkylenediamine as described in our previous publications. ${ }^{9,10}$

[^0]${ }^{a} \mathrm{PE}=$ petroleum ether, $\mathrm{bp} 60-80^{\circ} \mathrm{C}$

Table III. Physical and Pharmacological Properties of Compounds with Alternative Links between Amino and Amide Functions

no.	R	R ,	A	mp, ${ }^{\circ} \mathrm{C}$	crystn solvent	yield, \%	emp formula	anal.	method of prepn	50% inhibn of tachycardia	inhibn, \%, of depressor response
39	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	H	$\left(\mathrm{CH}_{2}\right)_{3}$	94-95	EtOAc	26	$\mathrm{C}_{66} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$	C, H, N	A	210	0
40	CH ,	H	$\left(\mathrm{CH}_{2}\right)_{6}$	111-113	MeCN	20	$\begin{aligned} & \mathrm{C}, \mathrm{CH}_{2} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \\ & \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \end{aligned}$	C, H, N	A	44	16
41^{d}	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	H	$\mathrm{CH}\left(\mathrm{CH}, \mathrm{CH}_{2}\right.$	124-126	EtOAc	20	$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$	C, H, N	A	5	37
$42^{\text {d }}$	$n-\mathrm{C}_{5} \mathrm{H}$, ,	H	$\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$	102-103	EtoAc	11	$\mathrm{C}_{88} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$	C, H, N	A	5	0
$43^{\text {d }}$	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	H	$\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$	124-126	EtoAc	22	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$	C, H, N	A	3	0
$44^{\text {d }}$	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	$2-\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$	102-105	EtoAc	28	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$	C, H, N	A	19	30
$45{ }^{\text {d }}$	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	$2-\mathrm{CN}$	$\mathrm{CH}\left(\mathrm{CH}, \mathrm{CH}_{2}\right.$	124-128	EtOAc	33	$\mathrm{C}_{2}, \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$	C, H, N	A	4	10
$46^{\text {d }}$	$\stackrel{2-\mathrm{Cl}-}{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}}$	$2-\mathrm{NO}_{2}$	$\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$	98-101	TLC ${ }^{a}$	4	$\begin{aligned} & \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{5} \\ & 0.5 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	C, H, N	A	7	34
47	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	H	$\mathrm{C}\left[\left(\mathrm{CH}_{3}\right)_{2}\right] \mathrm{CH}_{2}$	oil	TLC ${ }^{a}$	16	$\begin{gathered} \mathrm{C}_{,} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \\ 0.25 \mathrm{H}, \mathrm{O} \end{gathered}$	C, $\mathrm{H}, \mathrm{N}^{\text {b }}$	A	3	0
48	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	H	$\mathrm{C}\left[\left(\mathrm{CH}_{3}\right)_{2}\right] \mathrm{CH}_{2}$	oil	TLC ${ }^{\text {a }}$	25	$\begin{gathered} \mathrm{C}_{2}, \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} . \\ 0.5 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	C, $\mathrm{H} ; \mathrm{N}^{\text {c }}$	A	11	0

${ }^{a}$ Purified by silica gel chromatography using $\mathrm{CHCl} 3 / \mathrm{MeOH}(4: 1, \mathrm{v} / \mathrm{v})$ as developing solvent. ${ }^{b} \mathrm{~N}:$ calcd, 8.9 ; found, 8.3 . ${ }^{c} \mathrm{~N}:$ calcd, 7.9 ; found, 7.0 . ${ }^{d}$ The proton nois decoupled ${ }^{13} \mathrm{C}$ NMR spectrum of 46 ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ solution at $60^{\circ} \mathrm{C}$ recorded on a JEOL FX 900) indicates that 46 is a $1: 1$ mix ture of diastereoisomers: two pairs of signals of similar in tensity were assigned to the $\mathrm{CH}_{3}(18.17$ and 18.07 ppm$)$ and the $\mathrm{CHOH}(68.29$ and 68.12 ppm$)$ carbon atoms of the diastereoisomers. Compounds $41-45$ are preumed to be mixtures of diastereoisomers.

no.	R	R,	mp, ${ }^{\circ} \mathrm{C}$	 crystn solvent	$\mathrm{H}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2}$ yield, \%	ONIIR	anal.	method of prepn	dose, $\mu \mathrm{g} /$ kg, giving 50% inhibn of tachycardia	inhibn, $\%$, of depressor response
49	H	H	108-110	MeCN	10	$\mathrm{C},{ }_{2} \mathrm{H}_{1}, \mathrm{~N}, \mathrm{O}$,	C, H, N	A	12	0
50	H	2 -CN	156-157	EtOH	24	$\mathrm{C},{ }_{3} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$,	C, H, N	A	60	21
51	CH,	$2-\mathrm{CN}$	139-140	MeCN	40	$\mathrm{C}, 4 \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$,	C, H, N	B	44	18
52	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	118-120	EtOAc	16	$\mathrm{C}, 4 \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$	C, H, N	A	24	0
53	i - $\mathrm{C}_{3} \mathrm{H}_{7}$	H	145-147	MeCN	25	$\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}, \mathrm{O}$,	C, H, N	A	99	0
54	${ }^{i}$ - $\mathrm{C}_{3} \mathrm{H}_{2}$	2-CN	147-149	MeCN	14	$\mathrm{C}_{46} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}$,	C, H, N	B	168	0
55	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	H	131-132	EtoAc	22	$\mathrm{C},{ }_{5} \mathrm{H}_{23} \mathrm{~N}_{3}^{4} \mathrm{O}$,	C, H, N	A	24	5
56	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	H	116-117	EtoAc	26	$\mathrm{C}_{66} \mathrm{H}_{27} \mathrm{~N}, \mathrm{O}$,	C, H, N	A	22	8
57	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	$2-\mathrm{CN}$	145-147	MeCN	21	C, ${ }_{7} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}$,	C, H, N	A	304	0
58	c-C. ${ }^{\text {H, }}$,	H	156-158	MeCN	13	$\mathrm{C}_{8} \mathrm{CH}_{29} \mathrm{H}_{29} \mathrm{~N}^{4} \mathrm{O}$,	C, H, N	A	282	6
59	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	144-145	EtOAc	18	$\begin{aligned} & \mathrm{C}_{8}{ }^{2} \mathrm{H}_{23}^{29} \mathrm{~N}, \mathrm{O}_{3} \\ & 0.25 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\mathrm{C}, \mathrm{H} ; \mathrm{N}^{a}$	A	53	0
60	$\mathrm{C}_{6} \mathrm{H}_{5}$	$2-\mathrm{CH}=\mathrm{CH}_{2}$	179-181	$\begin{gathered} \mathrm{EtOH}- \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	7	$\begin{aligned} & \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}, \\ & \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	C, H, N	A	85	0
61 62	$\mathrm{C}_{6} \mathrm{H}_{5}$	${ }_{2}^{2-\mathrm{OCH}_{3}} \mathrm{CH}=\mathrm{CH}$	160-161	$\xrightarrow{\mathrm{MeCN}}$	49	$\mathrm{C}_{9} \mathrm{CH}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$	C, H, N	A	60	0
62 63	$\mathrm{C}_{6}^{\mathrm{C}_{6} \mathrm{H}_{5}}$	$\underset{2-\mathrm{COCH}}{2-\mathrm{OCH}}$	126-128	${ }_{\text {E }} \stackrel{\text { iPrOH }}{ }$	4	$\mathrm{C}_{2}, \mathrm{H}_{22} \mathrm{~N}^{2}, \mathrm{O}_{4}$	C, H, N	A	37 89	24
63	$\mathrm{C}_{6} \mathrm{H}_{5}$	$2-\mathrm{COCH}$,	165-167	$\begin{gathered} \text { EtOH- } \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	8	$\begin{aligned} & \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}, \mathrm{O}_{4}^{4} \\ & \mathrm{C}_{2} \mathrm{H}, \mathrm{O}_{4} \end{aligned}$	C, H, N	A	89	25
64	$\mathrm{C}_{6} \mathrm{H}_{5}$	$2-\mathrm{COOCH}_{3}$	126-127	MeCN	36	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}$	C, H, N	C	133	10
65 66	$\mathrm{C}_{6} \mathrm{H}_{5}$	${ }_{2}^{2-\mathrm{Cl}}$	157-158	MeCN	34	$\mathrm{C}_{48} \mathrm{H}_{22} \mathrm{ClN}, \mathrm{O}_{3}$	C, H, N	A	37	4
66	$\mathrm{C}_{6} \mathrm{H}_{5}$	$2-\mathrm{CN}$	155-156	MeCN	11	$\begin{gathered} \mathbf{C}_{9} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} \\ 0.25 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	C, H, N	A	9	0
67	$\mathrm{C}_{6} \mathrm{H}_{5}$	$2-\mathrm{NO}_{2}$	159-161	MeCN	16	$\mathrm{C},{ }_{8} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}$	C, H, N	A	52	14
68	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$	H	147-149	EtOAc	16	$\mathrm{C}_{99} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$	C, H, N	A	124	32
69 70	${ }_{2}^{4-\mathrm{CH}_{3} \mathrm{O}-\mathrm{CH}_{6} \mathrm{H}_{4} \mathrm{H}_{4}}$	${ }_{2}{ }_{2} \mathrm{CN}$	$126-128$ $152-153$	EtOAc MeCN	9 52	$\mathrm{C}_{\mathrm{C}_{3} \mathrm{H}_{25} \mathrm{H}_{2} \mathrm{~N}, \mathrm{O}_{4}}$	C, H, N	${ }_{\text {A }}^{\text {B }}$	287 143	33 0
71	${ }_{2}^{2-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{H}_{4} \mathrm{H}_{4}}$	${ }_{2}^{2-C N}$	152-153	$\mathrm{MeOH}-$ MeCN	52 28	${ }_{\mathrm{C}_{19} 9}^{\mathrm{C}_{2} \mathrm{H}_{24}, \mathrm{ClN}_{4} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{O}_{3}}$	C, H, N $\mathrm{C}, \mathrm{N}, \mathrm{N}$	B B	143 366	0 0
72	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	2-CN	159-160	MeCN	13	$\begin{aligned} & \mathrm{C}_{\ldots} \mathrm{H}_{2}, \mathrm{ClN}_{4} \mathrm{O}, \\ & 0.25 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	C, H, N	A	25	1
73	$2-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	2 -CN	125-126	MeCN	18	$\mathrm{C}, 9^{2} \mathrm{H}_{2}, \mathrm{~N}_{5} \mathrm{O}_{5}$	C, H, N	B	97	11

Discussion

The object of this study was to discover the effect, on both β-blocking potency and β_{1}-cardioselectivity, of replacing the branched chain alkylamino moiety of an (aryloxy)propanolamine, such as propranolol, with an amidoalkylamino moiety. Tables I-V give the ED_{50} values (micrograms per kilogram) and the percentage inhibition of the depressor response in the cat at that dose level. For comparison purposes, the $\beta_{1} \beta_{2}$ blocker propranolol (86) and the β_{1}-cardioselective blocker practolol (85) have been included at the end of Table V.

The compounds described have been divided into five tables to facilitate discussion of the structure-activity relationships. Table I lists those amides derived from alkyl- and arylcarboxylic acids, Table II lists those amides derived from aralkyl- and aryloxyalkylcarboxylic acids, and Table III consists of analogues of Tables I and II where the link between the amino and amido groups is an alkylene chain other than ethylene. Table IV consists of ureido analogues. Table V consists of sulfonamido analogues. The tables show that the introduction of an amidoalkylamino moiety into the side chain of an (aryloxy)propanolamine confers a high degree of potency and cardioselectivity on the molecule. Sixty-eight percent of the compounds shown are more potent than propanolol ($86 ; \mathrm{ED}_{50}=62 \mu \mathrm{~g} / \mathrm{kg}$), and 64% are as cardioselective as practolol (85)(i.e., a depressor response inhibition of $0-10 \%$).

The biological data in Table I shows that most of the simple alkyl amides are very potent and many are cardioselective at the ED_{50}. Furthermore, the potency of these compounds is relatively insensitive to variation in chain length or side-chain branching, provided that the chain is short; cf. 5, 7, 9, and 10, ($\mathrm{C}_{1}-\mathrm{C}_{3}$, respectively). However, potency falls away markedly in the longer chain compounds 16 and 17 (C_{5} and C_{8}, respectively). Cardioselectivity, on the other hand, appears to be unaffected by chain length, since both compounds 16 and 17 are highly cardioselective.

The cycloalkyl amides 18 and 19 have comparable potency and selectivity to the small-chain alkyl amides, but the aryl amides ($20-24$), with the exception of the 3,4dihydroxybenzamide 23, are significantly less potent. We investigated the effect of ortho substituents in the aryl ring of the (aryloxy)propanol moiety in a series of isobutyramides (11-13), a variation known to increase potency amongst conventional isopropyl and tert-butylaminosubstituted β-blockers. ${ }^{12}$ There were, however, only small and random variations in potency, but a significant finding was the overall but relatively small reduction in cardioselectivity, when compared with the unsubstituted compound, 10. With this exception, the level of cardioselectivity was spread randomly among the compounds in Table I and could not be related to those factors affecting potency.

The arylalkyl amides and aryloxyalkyl amides listed in Table II are similar to the alkyl amides in that they are more potent than the analogous benzamides: thus, the phenylacetamides 25 and 26 were more potent than the benzamides 20 and 21. Also, in contrast to the benzamides, 2 or 4 substitution of the phenylacetamido ring has minimal effect on potency; cf. 26-30. Only one analogous comparison can be made between the phenoxyacetamides

[^1]and the benzamides; i.e., compound $\mathbf{3 5}$ was more potent than compound 20 , but the overall trend among the phenoxyacetamides in Table II showed them also to be more potent than the benzamides. It would therefore appear that a link separating the amide and aryl moieties favors potency.

Variation of the alkylene chain that separates the secondary amino group from the amide group (Table III) showed that a small branched alkylene chain gave optimal potency; thus, in a series of isobutyramides the compounds with tert-butylene and isopropylene links (47 and 41 , respectively) were slightly more potent than the compound with an ethylene linkage, 10 , and all three were much more potent than the longer chain propylene analogue 39. However, the effect on cardioselectivity was variable. Ortho substitution of the aryl ring, of the (aryloxy)propanol moeity, in those compounds with a branched alkylene link had little effect on potency: cf., 43, 44, and 45, but did, however, diminish cardioselectivity.

Replacement of the amide moiety by a ureido moiety (Table IV) resulted in an observable increase in the number of highly cardioselective compounds: thus, the series of alkyl- and cycloalkylureas $49,52,53,55$, and 56 with no substituent in the aryloxy ring all had a depressor response below 10%. Potency was, however, very variable. In a small related series, increasing the bulk of the alkyl substituent on the ureido moiety decreased potency: cf., 51, 54, and 57. The arylureas 59,68 , and 69 were less potent and cardioselective than the alkylureas, a similar finding to the comparison between benzamides and alkyl amides. Substitution in the aryloxy ring in a series of phenylureas, 60-67, had only a marginal effect on cardioselectivity and potency (cf., 59).
The replacement of the carboxamide moiety with a sulfonamide moiety (Table V) resulted in variable potency and cardioselectivity. The difference in activity between alkylsulfonamides and arylsulfonamides was less marked, and it appears that a large group adjacent to the sulfonamide moiety favors potency: thus, when compounds 74-77 were compared, the methyl-substituted sulfonamide was less potent than either the phenyl or propyl analogues; there was a less marked difference in cardioselectivity. Substitution of the phenylsulfonamide ring gave variable results, with the o-nitro analogue having potency and cardioselectivity similar to that of the unsubstituted compound: cf. 77 and 81 . Two para-substituted analogues, 79 and 80 , had lower potency and were less cardioselective. Branching the alkylene chain at R_{4} increased potency with little effect on cardioselectivity; cf. 81 and 83. Substitution of the secondary amino moiety to give a tertiary amino moiety dramatically reduced potency but had little effect on cardioselectivity; cf. 84 and 77.
In summary, our study shows that the introduction of an amidic moiety into the alkylamine side chain of an (aryloxy)propanolamine gives potent cardioselective β adrenoceptor blocking agents. The most potent group has a branched alkylene chain and is to be found in Table III, whereas the largest cardioselective group is the ureido analogues in Table IV.

Experimental Section

Chemistry. All melting points were obtained with an Electrothermal capillary melting point apparatus and are uncorrected. Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4 \%$ of the theoretical values. NMR spectra for all the compounds described were recorded either on a Varian HA100D or a Varian A 60 with tetramethylsilane as the internal standard and were consistent with the assigned structures.
3-[(2-Isobutyramidoethyl)amino]-1-phenoxypropan-2-ol
(10). Method A. A mixture of 1,2-epoxy-3-phenoxypropane (1.5 g, 0.01 mol), N-(2-aminoethyl) isobutyramide hydrogen oxalate ${ }^{10}$ ($2.2 \mathrm{~g}, 0.01 \mathrm{~mol}$), $4 \mathrm{~N} \mathrm{NaOH} \mathrm{(} 5 \mathrm{~mL}$) and $n-\mathrm{PrOH}(40 \mathrm{~mL}$) was refluxed for 18 h and then evaporated to dryness. The residue was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc, and the EtOAc phase was dried and evaporated to dryness. The residue was crystallized from EtOAc: yield $0.85 \mathrm{~g}(30 \%)$; mp $125-126^{\circ} \mathrm{C}$.
3-[[2-(3-Methylureido)ethyl]amino]-1-(2-cyanophenoxy)-propan-2-ol (51). Method B. 1,2-Epoxy-3-(2-cyanophenoxy)propane ${ }^{13}$ ($3.5 \mathrm{~g}, 0.2 \mathrm{~mol}$) was added to 1,2 -diaminoethane (60 $\mathrm{g}, 1 \mathrm{~mol}$), and the mixture was stirred at room temperature for 18 h and then added to water (500 mL). The mixture was filtered, and the filtrate evaporated to dryness to give 3 -(2-aminoethyl)-aminol-1-(2-cyanophenoxy)propan-2-ol as a light brown oil: yield $33 \mathrm{~g}(70 \%)$. A sample was characterized as the dihydrochloride, which was recrystallized from EtOH- $\mathrm{H}_{2} \mathrm{O}: \mathrm{mp} 235-236^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
A solution of methyl isocyanate ($0.57 \mathrm{~g}, 0.01 \mathrm{~mol}$) in MeCN (5 mL) was added over 0.1 h to a stirred solution of 3 -(2 -aminoethyl)amino]-1-(2-cyanophenoxy)propan-2-ol ($2.35 \mathrm{~g}, 0.01$ mol) in $\mathrm{MeCN}(40 \mathrm{~mL})$ while the temperature was kept below $-20^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature, and the insoluble solid was collected and recrystallized from MeCN: yield $1.15 \mathrm{~g}(40 \%) ; \mathrm{mp} 139-140{ }^{\circ} \mathrm{C}$.

3-[[2-(Phenoxyacetamido)ethyl]amino]-1-(2-cyanophen-oxy)propan-2-ol Hydrogen Oxalate (37). A mixture of 3-[(2-aminoethyl)aminol-1-(2-cyanophenoxy)propan-2-ol ($2.35 \mathrm{~g}, 0.01$ mol), and ethyl phenoxyacetate ($1.7 \mathrm{~g}, 0.01 \mathrm{~mol}$) was heated at $100^{\circ} \mathrm{C}$ for 18 h . The mixture was cooled, and the residue was partitioned between 2 N HCl and EtOAc. The aqueous phase was basified with 10 N NaOH and extracted with EtOAc, and the EtOAc extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. The residue was crystallized as the hydrogen oxalate from MeCN : yield $0.35 \mathrm{~g}(8 \%) ; \mathrm{mp} 130-132^{\circ} \mathrm{C}$.

3-[[2-(3-Phenylureido)ethyl]amino]-1-[2-(methoxy-carbonyl)phenoxy]propan-2-ol (64). A solution of 1,2 -epoxy3 -[2-(methoxycarbonyl)phenoxy]propane ${ }^{14}(2.08 \mathrm{~g}, 0.01 \mathrm{~mol})$ and 1-[2-(benzylamino)ethyl]-3-phenylurea ${ }^{10}(2.69 \mathrm{~g}, 0.01 \mathrm{~mol})$ in i PrOH (40 mL) was refluxed for 18 h and then evaporated to dryness. The residue was dissolved in EtOH (50 mL), the solution was treated with $30 \% \mathrm{Pd} / \mathrm{C}$, and the mixture was shaken under hydrogen at room temperature and atmospheric pressure for 5 h. The catalyst was filtered off, and the filtrate was evaporated to dryness. The residue was crystallized from MeCN : yield 1.4 $\mathrm{g}(36 \%) ; \mathrm{mp} 126-127^{\circ} \mathrm{C}$.

3-[[2-(2,5-Dihydroxybenzamido)ethyl]amino]-1-phenoxy-propan-2-ol Oxalate (24). A solution of 3 -[[2-[2,5-bis(benzyl-oxy)benzamidolethyl]amino]-1-phenoxypropan-2-0l ($2.2 \mathrm{~g}, 0.0036$ mol) (prepared by method A: hydrogen oxalate, mp $176-178^{\circ} \mathrm{C}$) in HOAc (50 mL) was hydrogenated over $5 \% \mathrm{Pd} / \mathrm{C}$ at room temperature and atmospheric pressure. The catalyst was filtered, and the filtrate was evaporated to dryness. The residue was crystallized from $\mathrm{MeOH} / \mathrm{EtOAc}$ and then from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$: yield $0.6 \mathrm{~g}(42 \%) ; \mathrm{mp} 195-197^{\circ} \mathrm{C}$.

3-[[2-(3,4-Dihydroxybenzamido)ethyl]amino]-1-phenoxy-propan-2-ol hydrogen oxalate (23) was prepared in a similar manner and crystallized from EtOH: yield 46%; mp $178-180^{\circ} \mathrm{C}$.
3-[[2-(Trifluoroacetamido)ethyl]amino]-1-phenoxy-propan-2-ol (6). Trifluoroacetic anhydride ($2.1 \mathrm{~g}, 0.01 \mathrm{~mol}$) was added over 0.2 h to a stirred solution of $3-[\mathrm{N}$-(2-aminoethyl) N -benzylamino]-1-phenoxypropan-2-ol ${ }^{10}$ ($3.02 \mathrm{~g}, 0.01 \mathrm{~mol}$) and triethylamine ($1.01 \mathrm{~g}, 0.01 \mathrm{~mol}$) in toluene (30 mL), and the mixture was stirred an additional 0.5 h after the addition was complete. The solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and then dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated to dryness.
A solution of the residue in $\mathrm{EtOH}(50 \mathrm{~mL}$) was hydrogenated over $30 \% \mathrm{Pd} / \mathrm{C}$ at room temperature and atmospheric pressure. The mixture was filtered, and the was filtrate evaporated to dryness, and the residue was crystallized from EtOAc/petroleum ether (bp $60-80^{\circ} \mathrm{C}$): yield $1.5 \mathrm{~g}\left(49 \%\right.$); $\mathrm{mp} 106-108^{\circ} \mathrm{C}$.

[^2]3-[(2-Formamidoethyl)amino]-1-phenoxypropan-2-ol (4) was similarly prepared by treatment of $3-[N-(2$-aminoethyl) $-N$ -benzylamino]-1-phenoxypropan-2-ol ${ }^{10}$ with methyl formate in $i-\mathrm{PrOH}$ at a reflux, followed by hydrogenolysis, and was crystallized from EtOAc: yield 15%; mp $107-109{ }^{\circ} \mathrm{C}$.

3-[\boldsymbol{N}-(2-Benzenesulfonamidoethyl)- \boldsymbol{N}-methylamino]-1-phenoxypropan-2-ol Hydrogen Oxalate (84). Iodomethane $(0.28 \mathrm{~g}, 0.002 \mathrm{~mol})$ was added dropwise to a stirred mixture of 3-[(2-benzenesulfonamidoethyl) amino]-1-phenoxypropan-2-ol (77; $0.7 \mathrm{~g}, 0.002 \mathrm{~mol}$), THF (10 mL), and an 80% dispersion of sodium hydride in oil ($0.06 \mathrm{~g}, 0.002 \mathrm{~mol}$). The mixture was stirred at room temperature for 1 h and then diluted with water and extracted with ether. The ether extract was dried and evaporated to dryness, and the residue was chromatographed on Merck Kieselgel 60F254 preparative TLC plates with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9: 1 \mathrm{v} / \mathrm{v})$ as developing solvent. The band having $R_{f} 0.5$ was removed and extracted with methanol, and the methanol evaporated to dryness. The residue was crystallized as the hydrogen oxalate from EtOAc: yield 0.1 $\mathrm{g}(14 \%) ; \mathrm{mp} 114-117^{\circ} \mathrm{C}$.
Pharmacology. β-Adrenoreceptor blocking potency was estimated in vivo with the previously described cat preparation. ${ }^{11}$

The results given in Tables I-V are the estimated dose, infused over a period of 30 min , that would cause a 50% inhibition of the tachycardia produced by a submaximal dose of isoproterenol (0.2 $\mu \mathrm{g} / \mathrm{kg}$ dosed iv). The estimated degree (percent) of blockade of the vasodepressor response at that dose level is also given. Three to five dose levels of each compound were used to calculate these estimates. The relative potencies in these two systems give an indication of selectivity for B_{1} (cardiac) as opposed to β_{2} (vascular) receptors. Mean $\log E D_{50}$'s were calculated for each compound on the basis of two or three tests, and the standard errors of the means were computed. On average, these mean values had an error of 30%. Previous data ${ }^{11}$ have shown that the error in the percent inhibition of the depressor response at the ED_{50} value for inhibition of isoproterenol-induced tachycardia is less than 5\%.

Acknowledgment. The authors thank M. J. A. Johnson, E. M. Hadley, and A. Burke for their expert technical assistance, Dr. J. D. Fitzgerald and J. Carter for providing biological data, and C. J. Howarth for providing analytical data.

Derivatives of the Potent Angiotensin Converting Enzyme Inhibitor 5(\boldsymbol{S})-Benzamido-4-oxo-6-phenylhexanoyl-L-proline: Effect of Changes at Positions 2 and 5 of the Hexanoic Acid Portion

Ronald G. Almquist, ${ }^{*, \dagger}$ Jac Crase, ${ }^{\dagger}$ Clive Jennings-White, ${ }^{\dagger}$ Robert F. Meyer, ${ }^{\ddagger}$ Milton L. Hoefle, ${ }^{\ddagger}$ Ronald D. Smith, ${ }^{\mathcal{8}, ~} \downarrow$ Arnold D. Essenburg, ${ }^{\S}$ and Harvey R. Kaplan ${ }^{\S}$
Bio-Organic Chemistry Laboratory, SRI International, Menlo Park, California 94025, and Departments of Chemistry and Pharmacology, Warner-Lambert/Parke-Davis Pharmaceutical Research Division, Warner Lambert Company, Ann Arbor, Michigan 48105. Received February 1, 1982

Abstract

Several derivatives of the potent angiotensin converting enzyme inhibitor $5(S)$-benzamido-4-oxo-6-phenyl-hexanoyl-L-proline (1) were synthesized and tested for converting enzyme inhibition activity and blood pressure lowering effects in rats. One compound, $5(S)$-benzamido- $2(R)$-methyl-4-oxo- 6 -phenylhexanoyl-L-proline (2 a), had an I_{50} against angiotensin converting enzyme of $1.0 \times 10^{-9} \mathrm{M}$ and is the most potent inhibitor prepared thus far in this class of compounds. Testing of 2 a orally at $30 \mathrm{mg} / \mathrm{kg}$ for inhibition of the angiotensin I induced blood pressure increase in conscious normotensive rats gave 100% inhibition that required 143 min before the angiotensin I blood pressure response returned to 70% of the pretreatment control response. In the conscious renal hypertensive rat, 2a given orally at a dose of $3 \mathrm{mg} / \mathrm{kg}$ caused a lowering of blood pressure that reached its maximum of 40 mmHg 8 h following drug administration.

In a previous publication, ${ }^{1}$ numerous derivatives of the potent angiotensin converting enzyme (ACE) inhibitor $5(S)$-benzamido-4-oxo-6-phenylhexanoyl-L-proline ${ }^{2}$ (1)

1
were described. These compounds were tested as ACE inhibitors both in vivo and in vitro and as antihypertensive agents in renal hypertensive rats. Many of these compounds were potent ACE inhibitors in vitro but much less potent in vivo.

In order to increase the in vivo activity of this class of ACE inhibitors, we tried two approaches. First, structural

[^3]changes in 1 were made with the hope of increasing its ACE inhibiting activity and thus decreasing the amount of compound that must be absorbed orally to inhibit ACE in vivo. Considering that the tripeptide Phe-Ala-Pro had over 10 times the ACE inhibitory activity of our model tripeptide Phe-Gly-Pro, ${ }^{2}$ we thought that a 2 -methyl substitution in the hexanoyl chain of 1 would greatly increast its ACE inhibition. Therefore, compounds 2a-d were synthesized to investigate the 2 -methyl substitution effect.

A second method of increasing oral absorption of compounds is to increase their lipophilicity. We have synthesized a series of derivatives of 1 , compounds $3 \mathbf{a}-4 \mathbf{c}$, with increased lipid character. These compounds were tested in vitro and in vivo as ACE inhibitors.

Chemistry. The synthetic pathway for the preparation of compounds $2 \mathbf{a}-\mathbf{4 c}$ is shown in Scheme I. As described previously ${ }^{1}$ using a modification of the Dakin-West reaction, ${ }^{3}$ the oxazolone 5 was reacted with the desired acid

[^4]
[^0]: (4) S. G. Hastings, R. D. Smith, R. M. Corey, A. D. Essenburg, C. E. Pettway, and D. K. Tessman, Arch. Int. Pharmacodyn. Ther., 226, 81 (1977).
 (5) K. Sugawara, N. Takami, ane M. Dzaki, Arch. Int. Pharmacodyn. Ther., 240, 294 (1979).
 (6) W. J. Rzeszota, R. E. Gibson, D. A. Simms, and J. N. Vaugen, J. Am. Chem. Soc., 102, 34 (1980).
 (7) J. Augstein, D. A. Cox, A. L. Ham, P. R. Leeming, and M. Snarey, J. Med. Chem., 16, 1245 (1973).
 (8) L. H. Smith and H. Tucker, J. Med. Chem., 20, 1653 (1977).
 (9) M. S. Large and L. H. Smith, J. Med. Chem., 23, 112 (1980).

[^1]: (10) L. H. Smith, U.K. Patent 1455116 (1976); Chem. Abstr., 81, P104983m.
 (11) J. D. Fitzgerald and S. R. O'Donnell, Br. J. Pharmacol., 43, 222 (1971).
 (12) L. H. Smith, J. Med. Chem., 19, 1119 (1976).

[^2]: (13) W. E. Kreighbaum, W. L. Matier, R. D. Dennis, L. Minielli, D. Deitchmann, J. L. Perhach, Jr., and W. T Comer, J. Med. Chem., 23, 285 (1980).
 (14) S. N. Rastogi, N. Anand, P. P. Gupta, and J. N. Sharma, J. Med. Chem., 16, 797 (1973).

[^3]: ${ }^{4}$ SRI International.
 \ddagger Department of Chemistry, Warner Lambert Co.
 ${ }^{8}$ Department of Pharmacology.
 ${ }^{\perp}$ Present address: Revlon Health Care, Tuckahoe, NY.

[^4]: (1) R. F. Meyer, E. D. Nicolaides, F. J. Tinney, E. A. Lunney, A. Holmes, M. L. Hoefle, R. D. Smith, A. D. Essenburg, H. R. Kaplan, and R. G. Almquist, J. Med. Chem., 24, 964 (1981).
 (2) R. G. Almquist, W.-R. Chao, M. E. Ellis, and H. L. Johnson, J. Med. Chem., 23, 1392 (1980).

